A Beam Dynamics View on a Generalized
Formulation of Spin Dynamics, Based on Topological
Algebra, with Examples
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Abstract

Here | rephrase the results of work[1l, 2, 3, 4, 5, 6] performed
in several collaborations with K.Heinemann!, J.A.Ellison?,
D.P.Barber?, and A.Kling® on a generalized look on spin
dynamics and beam polarization in storage rings. It is done in
a way that emphasizes the applicability of the concepts to real
world polarized beams rather than presenting the results in their
most general form. The latter view can be found in several
articles on the ArXiv and will be published in refereed journals
soon. | will introduce several “spin-related” systems, state some
selected main results of the above mentioned work and then
recover and compare some basic (and some not so basic) findings
for the various systems in the light of our generalized approach.
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Introduction

Spin/Orbit Dynamics

e Time—Discrete picture — maps!

e Integrable orbital motion on torus 7%
actions J = const & phases mapped by tune w

My : T = T 6 = My(¢) = [6+wlr (1)

e "'Polarization” assume BMT—evolution for vector
Pol. 5 and starting at ¢:

R:T%—=S0O(3), ®— R(¢) € SO(3) (2)
w/ §e R,

e “Spin” = “Polarization” w/ norm 1:
|5]]2 =1 (Eucl. norm) < ||R5]j2 = |52 ,
t = V/trace(s15) = 1 «< |R<B"|l = ||sIl

5

Dynamics of Fields

e \/ector/tensor polarization/Spin fields = sequences of fields
on the torus: F), (=5,/S,) / F, (=5,/5,), n € Ny, so that

Fn+1<Mw<¢)> — E(¢) Fn<¢> A

Fui1(¢) = R(M;'(6)) Fu(M(9)) (3)
Fo(My(¢) = R(¢) F,(¢) R(¢)" <

Fo1(¢) = R(M; " (¢)) F,(M; " (¢)) R(M, " (¢))"(4)

note: e.g. Fj,,1 = M, R - M, F,, with M, the P.F. op. of M|

e The vector/tensor polarization/spin fields are invariant, if
Foy1=1F,, or I, | =1F, (— skipn!)

WPF: P(o) = R(MS'(0)) P(M_'(6) (5)
IVSF: N(¢) = R(M"(¢)) N(M;'(¢)) (6)

= (7)
ItSF: N(¢) = R(M,'(¢)) N(M, (¢)) R(M, ()" (8)

< (Q1) Are these invariants somehow related for
common M ,, R ???
(Q2) How do they relate for varying M, R 777

e Note: the trivial polarization fields ﬁnun(gb) =0
& are always invariant

The New Formalism (Basics)

(a) SO(3)—Action :
Let £/ be a “set” and

l:SOB)x E—FE, (Az)—y=IlAz) e FE

ity

so that

[(1;2) = & veer
H(AsAy: 7) = Ay 1(Ay: ) vecra, aresors) (9)
then [ is the SO(3)—Action of the SO(3)-Space (E, ).
If Eis a lin. space and L is lin. in A & z, (E,1) is a representation.

— Vector pola.: Ey :=R?, [3(A;5) := AS
E{, = 82, l{,(A; §> = A§

Vector spin :

Tensor spin : E; .= {5 € E;
lo(A;8) = As A"
combined E/orbit—-map K of (E,[) with M, & R :
TixEL TIXE, (¢,2) 5 (MJ(6),l(R($): z))
— invariant fields: condition becomes
FoMy=U(R F)&FoM,=L(RF)
(b) (E,1)—-Orbit E, of z :

Ve € E: is asubset £, C F

E, =1(SO(3);x) ={l(A;x): Ae SO(3)}
— |inv. sets of comb. map: K(Td X Fy) = T % E.

— 1(SO(3); 5)=82 3|2, 1:(SO(3); 0)=0, 1:(SO(3); 8)=8,

¢ =1},

5

Fig.1: SPRINT (HERA-p) example of C'-IVSF driven by 1-d
(vertical) orbital motion.

T

(c) Isotropy Group :
Let (E,l) be SO(3)-space & x € E, the sub-
group of SO(3) for which x is a fixed point of
[(A;-) is called isotropy group of (E,[) at x:
Iso(F,l;z):={A € SO(3):l(A;x) =x}
—Iso(FE,l;z) = SO(3) iff B, = {z}
— Iso(Ey, ly; 6) = S0O(3),
Iso(FEy, ly; § # 0) = {rotations around 5} = SO(2)
(d) G=Map (of SO(3)) :
maps between two SO(3)-spaces
& is structure preserving:
[ (B, 1) = (B, )
I5(A: () = D(1y(A; )
VA € SO(3), Vz € F
<— Don't call it “SO(3)-map”, since that smells like
AR5 R3 § A(3) = A5, A e SO(3) !
FE%\A/ By — Ef' S \/3/2(_ — %§§T)
fulfills 1;(A; I';, (5)) = 1, ([3(4;5))
e More examples:
— Singlet repres.: g =R, [,4(A;p) :=p
— Liouville PSD: U, = li(R; U,0M_") = W,0M!
s inv. Liouville PSD W o M, = ljy(R; V) = U
— Product action: Fiy 9 = E{ X E»,
lix2(4; (w1, 22)) = (L1(A; 21), 12(4; 22))

® Most of this is from ABQ, so we're not surprised. . .

Fig.2: SPRINT (HERA-p) example of C'-IVSF driven by 2-d

(vertical & horizontal) orbital motion.

T2 S? in R?

... there’s a secret ingredient in it[8]...

e ...and it's neither red nor green chile:

e For the theorems to work we need certain
regularity constraints:

e We choose global continuity (on topological spaces F),
eecg.: M, € Homeo(T%), R € C'(T% S0O(3)) and

e all our (invariant) fields (and candidates) need to
be globally continuous, i.e. € C'(T?, E)

ol call 'em: C'-IvPF, C'-IvSF,
& CU—ItSF |

Normal Form Theorem (NFT)

Let T € CY(T%,SO(3)), (E,l), M,, R as before,
and x € E fixed.
Define f € CU(T? E), R € C%(T% SO(3)) by

f=UT;z), R -=T'oM,RT . (10)

Then f is an invariant (E,)-field (fo M, = (R 1)), iff

R(¢) €eIso(E,l:x)Vo e T . (11)

o If R’ € some subgroup of SO(3)
= (M, R') is a normal form of (M,,, R)

o (B, ly) w/ z:= (0,0, !
N :=1(T; 2) is a C'-IVSF iff R'(¢) € SO(2)

Decomposition Theorems

e SO(3) Mapping Lemma (SML):
Let I' € CV((EY, 11), (E5, 15)) be a G—map,
f1 € CUT? EY), and fy € CO(TY, Ey) be defined
by f2 =10 fl- Then
lo(RoM;; fooM ;') =T (I (RoM;; froM; ),
for all M, R, i.e. the field dynamics is preserved.

®ip..|fioM, = ll(ﬁ, f1> = fooM, = l2<E7 f2>
oif [' € Homeo((E1, 1), (Eo, o)),

then also “<" is true.

e Decomposition Corollary (DC):
The DC generalizes the SML to G-maps from
(E1,11)-orbit F g, to (E9, l9)—orbit F9 4, of 1 €
Eq, 29 € Eo.

Remarks

e The NFT answers, to some extent (Q2),
while the SML/DC answer (Q1).

e The proofs can be found in [1, 2, 4].
e [ he above sources state further theorems.

e This poster resembles a reduction to what | think are the high-
lights of our results.

e Global Continuity is a strong restriction (see 4th example).

e Global Continuity is a weak restriction, since functions real-
ized in physics normally tend to be (piecewise) smooth (C™)

e The regularity constraints for our framework could be made
stronger (— globally C*, k& > 0) or weaker (— globally mea-
surable), thereby modifying the applicability of the premises
and the strength of the conclusions.

= Some findings might get strengthened when stronger con-
straining regularity, some might get weakened when weakening
the constraints, some might turn out robust.

Example 1: Relation C'-IVSF < C'—ItSF
o['., . (see above) is a G—-map in C(E,, Ey)

t—v
(N) is a C'-ItSF, if N is a CV~IVSF.

= N=17 5
< The constructed C"-ItSF has 2 distinct eigenval's.

= If the C"~IVSF is unique up to global sign,
so is the C'—ItSF [6].

e To construct S’s that have 3 distinct eigenval’s:
r% . B, x B, — B,

3ev
(f.9) = al—Qa+B)ffM +(B—a)gg" w/
o’ +aB+ 2=1/2isa G-map in C'(E; x E;, E;).
We have shown in[6] that Féoe"vﬁ) can only generate a C'-ItSF,

when the system is on spin—orbit resonance, i.e. when the

CY-IVSF is non—-uniquel!

®l|f a has only 1 eigenvalue, it must be the trivial one.

Example 2: Spin—1/2 Density Matrix

e The physics—interface between the macroscopic,
classical description of a particle beam in an accel-
erator, and a QM/QFT scattering processes is the
density matrix p. (p'? f. spin-1/2, p' f. spin-1)

1/2
J

p(0) =V (@) (1+&- Ss(0))
w/ W the (orbital) Liouville PSD, S the pola. field, both

describing the beam, and & is the vector of Pauli matrices.

.£1/2 c E1/2 - {Z c CQXQ : fT _ K}

o, EuXFEy— Eyp, (4,3~ 3(¥l+3-53)
31/2 — F1/2(‘11; qu)

o', € Homeo(Ejq X Eg, E, ) is G-map

® Here: p'/*(¢) for given torus w/ fixed orbital actions J = const

1/2 = -
= Beillﬂ — Fl/Q(\IjeqU_i7 \Ijequlp) IS 1NV. <E1/2, 11/2>_f|EId

iff U,y is an inv. Liouv. PSD and P is a C'~IvPF.

_ O =
O =

) is G—-map
=

Example 3: Spin—1 Density Matrix
° ::\If%(lnL%i'ng\/gZijﬂ <Zi2j+2jzi>>
0 —i 0 100 010

21’2,3:\/3(z‘ 0 z'),(OOO),(l )
0 i 0 001 0
°p' € E Z:{EECSXBI[T:£}
ol : EidXE{,'XEf—)El, (¢7§7 >I—>
S| C2RE DREARVED ST IS 1 h)
= T,(T, 0S5, 05)
o [, € Homeo(Fiy X Ez x F-,
— F1(\Ijequia \Ijequipa \Ijequi )
IS iff Weqyi is an inv. Liouv. PSD
and P is a C'-IVPF and 7 is a
e The maximum attainable equilibrium polarization
state is realized (for spin-1/2 & 1), when
Béﬁfui = Tuo(Wequis VequilV) (e ¥ is c-isF) &
Béqui — F1<\Ijequiv \PequiNa \Ifequiﬂ> (and NN is C'~ItSF)

A Discontinuous Example (4)

e Slightly artificial set up:
e VI, resonant: % = Wl_Q n=1223,...

e 12 given by Single Resonance Model
& added Lee—Courant 2 snake scheme =
— 2 Siberian snakes 180° in azimuth apart,
— both snake axes in the ring—plane,

— axes perpendicular

o [vSF needs 2n discontinuities (sign flips) in ¢y, [2, 7]

(otherwise it becomes twin—valued under iteration of R !)

e [VSF is not CY-IVSF
= framework does not apply

e However, corresponding [tSF is CU—|tSF
= framework does apply
+— except example 1.
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